# The MUliple SCattering in Lidar Experiments (MUSCLE) Intercomparison Exercises, and Other I3RC Considerations

Anthony B. Davis

Los Alamos National Laboratory

Space & Remote Sensing Sciences Group (ISR-2)





### **Topics**

- MUSCLE
  - what is it?
  - intercomparisons
- Intercomparison overview
  - with a gap to fill?
- 3D RT: Focus on the big-picture
  - where we are, and
  - where to go

#### **MUSCLE**

- Origins 1995, ending with ...
  - Lidar-In-space Technology Experiment (LITE) on Space Shuttle in Fall 1994, esp. night orbit #135
  - Applied Optics B Special Issue (5+1 papers)
- 1996 2005 period:
  - Quebec City
  - Jerusalem
  - Florence
  - Williamsburg
  - Oberpfaffenhoffen (near München)
  - St. Petersburg
  - Quebec City
- Next?

#### Applied Physics B: Lasers and Optics, Volume 60, Issue 4, April 1995

```
Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.,
Monte-Carlo calculations of LIDAR returns: Procedure and results,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 325-329.
Flesia, C.; Schwendimann, P.,
Analytical multiple-scattering extension of the Mie theory: The LIDAR equation,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 331-334.
Starkov, A.V.; Noormohammadian, M.; Oppel, U.G.,
Stochastic model and a variance-reduction Monte-Carlo method for the calculation of light
transport,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 335-340.
Winker, D.M.; Poole, L.R.,
Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 341-344.
Zege, E.P.; Katsev, I.L.; Polonsky, I.N.,
Analytical solution to LIDAR return signals from clouds with regard to multiple
scattering,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 345-353.
     Bissonnette, L.R.; Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.; Cohen, A.;
     Benayahu, Y.; Kleiman, M.; Egert, S.; Flesia, C.; Schwendimann, P.; et al.,
     LIDAR multiple scattering from clouds,
     Applied Physics B: Lasers and Optics,
     Volume 60, Issue 4, April 1995, Pages 355-362.
```

#### Applied Physics B: Lasers and Optics, Volume 60, Issue 4, April 1995

```
Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.,
Monte-Carlo calculations of LIDAR returns: Procedure and results,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 325-329.
Flesia, C.; Schwendimann, P.,
Analytical multiple-scattering extension of the Mie theory: The LIDAR equation,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 331-334.
Starkov, A.V.; Noormohammadian, M.; Oppel, U.G.,
Stochastic model and a variance-reduction Monte-Carlo method for the calculation of light
transport,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 335-340.
Winker, D.M.; Poole, L.R.,
Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS,
Applied Physics B: Lasers and Optics,
                                                                                        MC
Volume 60, Issue 4, April 1995, Pages 341-344.
Zege, E.P.; Katsev, I.L.; Polonsky, I.N.,
Analytical solution to LIDAR return signals from clouds with regard to multiple
scattering,
Applied Physics B: Lasers and Optics,
Volume 60, Issue 4, April 1995, Pages 345-353.
     Bissonnette, L.R.; Bruscaglioni, P.; Ismaelli, A.; Zaccanti, G.; Cohen, A.;
     Benayahu, Y.; Kleiman, M.; Egert, S.; Flesia, C.; Schwendimann, P.; et al.,
     LIDAR multiple scattering from clouds,
     Applied Physics B: Lasers and Optics,
     Volume 60, Issue 4, April 1995, Pages 355-362.
```

### **MUSCLE Comparison Plots**

- I3RC (deterministic, computational)
- ICRCCM III (statistical, modeling)
- RAMI (vegetation canopies)
- MUSCLE (localized/pulsed sources)

- I3RC (deterministic, computational) pixels
- ICRCCM III (statistical, modeling) spectra
- RAMI (vegetation canopies)
- MUSCLE (localized/pulsed sources) time/ range

- I3RC (deterministic, computational)
- ICRCCM III (statistical, modeling)
- RAMI (vegetation canopies)
- MUSCLE (localized/pulsed sources)
- Non-vegetated surfaces?
  - DIRSIG (Rochester)
  - McSCENE (Spectral Sciences, Inc.)
  - Something with radiosity
  - Etc.

- I3RC (deterministic, computational)
- ICRCCM III (statistical, modeling)
- MUSCLE (localized/pulsed sources)
- RAMI (vegetation canopies)
- Non-vegetated surfaces?
  - DIRSIG (Rochester)
  - McSCENE (Spectral Sciences, Inc.)
  - Something with radiosity
  - Etc.

# Focus on the Big 3D RT Picture

| $I(x, \vec{\Omega})$         | Diagnostics use radiances [sample $\Omega$ ] | Energetics use fluxes [sum over $\Omega$ ] |
|------------------------------|----------------------------------------------|--------------------------------------------|
| "pixel" scales:              |                                              |                                            |
| structure<br><u>resolved</u> |                                              |                                            |
| [sample x]                   |                                              |                                            |
| "domain" scales:             |                                              |                                            |
| structure                    |                                              |                                            |
| unresolved                   |                                              |                                            |
| [sum over x]                 |                                              |                                            |

| $I(x, \vec{\Omega})$                               | Diagnostics use radiances [sample $\Omega$ ] | Energetics use fluxes [sum over $\Omega$ ] |
|----------------------------------------------------|----------------------------------------------|--------------------------------------------|
| "pixel" scales: structure resolved [sample x]      | Adjacency problems                           |                                            |
| "domain" scales: structure unresolved [sum over x] |                                              | GCM radiation parameterization problem     |

| $I(x, \vec{\Omega})$                               | Diagnostics use radiances [sample $\Omega$ ] | Energetics use fluxes [sum over $\Omega$ ] |
|----------------------------------------------------|----------------------------------------------|--------------------------------------------|
| "pixel" scales: structure resolved [sample x]      | Adjacency problems                           | 3D radiative heating/cooling rates in CRMs |
| "domain" scales: structure unresolved [sum over x] | Large-footprint problems                     | GCM radiation parameterization problem     |

| $I(x, \vec{\Omega})$                                                    | Diagnostics use radiances [sample $\Omega$ ] | Energetics use fluxes [sum over $\Omega$ ] |
|-------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|
| "pixel" scales: structure resolved                                      | Adjacency problems                           | 3D radiative heating/cooling rates in CRMs |
| [sample $x$ ]  "domain" scales:  structure  unresolved  [sum over $x$ ] | Large-footprint problems                     | GCM radiation parameterization problem     |

| $I(x, \vec{\Omega})$ | Diagnostics use radiances [sample $\Omega$ ] | Energetics use fluxes [sum over $\Omega$ ] |
|----------------------|----------------------------------------------|--------------------------------------------|
| "pixel" scales:      | Adjacency                                    | 3D radiative                               |
| structure            | problems                                     | heating/cooling                            |
| resolved             |                                              | rates in CRMs                              |
| [sample x]           | 2D                                           | 3D                                         |
| "domain" scales:     | Large-footprint                              | GCM radiation                              |
| structure            | problems                                     | parameterization                           |
| unresolved           |                                              | problem                                    |
| [sum over $x$ ]      | 0D                                           | 1D                                         |

### **Atmospheric 3D RT Evolution**

#### 1975 - 1995 (and beyond):

3D damage assessment for 1D RT modeling i.e., uncertainty quantification

#### Since 1995:

- → damage *mitigation* (back to 1D, w/o bias)
- → *innovation* (exploit 3D RT phenomena)

### **3D Damage Mitigation**

- Effective optical depth (e.g., Cahalan 1994)
- Gamma-Weighted 2-Stream (Barker 1996)
- Rescaled optical properties (Cairns et al. 2000)
- Effective optical properties (Szczap et al. ≈2002)
- Nonlocal Independent Pixel Approximation -NIPA (Marshak et al. 1998)
- Etc.

#### Innovation

- In energetics, this calls for new equations to solve:
  - Markovian stochastic media;
  - Stephens' (1998b) closure scheme;
  - Power-law propagation kernels, formerly known as Lévy/anomalous photon diffusion model.
- In diagnostics, this means going beyond improved or adapted sampling of photon state-space (wavelength, position/direction, maybe polarization). Uses 3D photon flow patterns and/or population properties.

## Innovation, continued: Examples in Remote Sensing

- Exploitation of radiative smoothing in R or in T
- Normalized Difference Cloud Index NDCI
- "Bright/Dark" radiance ratio technique for dense compact clouds
- Pathlength moments from O<sub>2</sub> A-band spectroscopy at fine or ultra-fine resolution
- Large-footprint cloud lidar
  - LITE
  - "in situ" cloud lidar (not "remote" per say)
- Off-beam cloud lidar w/ space- and time-resolution
  - WAIL (at LANL) & THOR (at NASA-Goddard)

### "Take Home" Messages

- Verification and Validation (V&V)
  - "solve the equations right"

(Roache ≈2000)

- "solve the right equations"

#### Work with others ...

- Atmosphere Ocean Land Planetary
  - Modelers
  - Observers
- Need more/better approximation techniques
- Outreach & teaching

#### Dream up new observations

- New synergies
- New instruments